Object Categorization with SVM: Kernels for Local Features

نویسندگان

  • Jan Eichhorn
  • Olivier Chapelle
چکیده

In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Non-Mercer Kernels for SVM Object Recognition

On the one hand, Support Vector Machines have met with significant success in solving difficult pattern recognition problems with global features representation. On the other hand, local features in images have shown to be suitable representations for efficient object recognition. Therefore, it is natural to try to combine SVM approach with local features representation to gain advantages on bo...

متن کامل

Can Boosting with SVM as Week Learners Help?

Object recognition in images involves identifying objects with partial occlusions, viewpoint changes, varying illumination, cluttered backgrounds. Recent work in object recognition uses machine learning techniques SVM-KNN, Local Ensemble Kernel Learning, Multiple Kernel Learning. In this paper, we want to utilize SVM as week learners in AdaBoost. Experiments are done with classifiers like neare...

متن کامل

Finding Optimal Combination of Kernels using Genetic Programming

In Computer Vision, problem of identifying or classifying the objects present in an image is called Object Categorization. It is a challenging problem, especially when the images have clutter background, occlusions or different lighting conditions. Many vision features have been proposed which aid object categorization even in such adverse conditions. Past research has shown that, employing mul...

متن کامل

Exploring Kernels in Svm-based Classification of Larynx Pathology from Human Voice

In this paper identification of laryngeal disorders using cepstral parameters of human voice is investigated. Mel-frequency cepstral coefficients (MFCC), extracted from audio recordings, are further approximated, using 3 strategies: sampling, averaging, and estimation. SVM and LS-SVM categorize preprocessed data into normal, nodular, and diffuse classes. Since it is a three-class problem, vario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004